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[1] Spatial and temporal variability of the magnetic field component induced by ocean
circulation is investigated on the basis of a standard thin-shell approximation of
electro- and magneto-static equations. Well-known difficulties of numerical solution of
the governing equations are resolved by reducing the problem to an equation for the
electric field potential, F, as opposed to a more conventional approach focused on
the vertical jump, y, of the magnetic field potential across a combined ocean/
marine-sediment-layer spherical shell. The present formulation permits using more
realistic input data on ocean currents and ultimately yields much greater (by at least
an order of magnitude) values of the magnetic field at sea surface than predicted in
earlier studies. Such large values are comparable to, and in some cases exceed,
magnetic field variations caused by lithospheric and ionospheric sources on monthly
to interannual timescales. At the 400-km altitude (of CHAMP satellite), the field
attains 6 nT. The model predictions show favorable comparisons with some in situ
measurements as well as with Challenging Minisatellite Payload (CHAMP) satellite
magnetometer data.
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1. Introduction

[2] Electro-magnetic induction due to the flow of con-
ducting seawater in the Earth’s magnetic field has been a
subject of research interest for many years [e.g., Sanford,
1971; Larsen, 1992; Stephenson and Bryan, 1992; Chave
and Luther, 1990; Lilley et al., 1993, 2001; Tyler et al.,
1997; Flosadottir et al., 1997a, 1997b]. Recent increase of
research activities [e.g., Tyler et al., 2003; Vivier et al.,
2004; Maus and Kuvshinov, 2004] is motivated by possible
use of spaceborne magnetometers for monitoring ocean
currents and tides. An important question to be answered
by such studies is whether the magnitude of the ocean-
induced magnetic field, b, is sufficient for detection by
present magnetometers.
[3] In situ measurements at and below the ocean

surface demonstrated that this magnitude reaches many
tens of nanotesla (nT) [Lilley et al., 2001]. Ocean eddies
near Tasmania induce up to 25-nT magnetic fields [Lilley
et al., 1993] at the sea surface. However, present numer-
ical models predict much lower values. For example,
Stephenson and Bryan [1992] found the vertical compo-
nent, bz, of the field at the sea surface to be of order 1 nT,
while Tyler et al. [1997] and Vivier et al. [2004] reported
field magnitudes within a few nT. One of the goals of

the present study is to demonstrate that an accurate
numerical implementation of the commonly accepted
theory produces values at least an order of magnitude
greater. At the CHAMP satellite altitude, our computa-
tions produce up to 6 nT, also considerably greater than
predicted earlier. The standard deviation of this signal
from its long-term time average is within 1 nT, and this
is confirmed by our preliminary analysis of the CHAMP
data, section 6.
[4] The now standard approach to calculating the ocean-

induced signal is due to Larsen [1992] and Stephenson and
Bryan [1992], who employed the thin-shell approximation
of the electro- and magneto-static equations and reduced the
problem to a single equation for field variations in the
horizontal plane x:

r � Keffry
� �

¼ G xð Þ: ð1Þ

Here y is the vertical jump in the magnetic field potential
across the spherical shell comprised of two conducting
layers: the ocean and the underlying marine sediment. This
function is linearly proportional to the stream function for
(the horizontal component of) a vertically integrated
electric current [Larsen, 1992; Stephenson and Bryan,
1992]. Keff (x) is the effective magnetic diffusivity
representing the combined sediment and ocean layers:
Keff = [m(Soc + Ss)]

�1, and G = �r � [(Soc + Ss)
�1 FzS]

is the ocean-induced ‘‘forcing function.’’ Here m is the

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, C12011, doi:10.1029/2005JC002926, 2005

Copyright 2005 by the American Geophysical Union.
0148-0227/05/2005JC002926$09.00

C12011 1 of 13



magnetic permeability, and the other parameters are given by
equation (11).
[5] As is known from standard literature [e.g., Richtmyer

and Morton, 1967], and highlighted for the case of ocean-
induced fields by Stephenson and Bryan [1992], a fully
convergent numerical solution of equation (1) is difficult to
achieve for large values of Keff and small mesh size. We
demonstrate in section 4 that an incomplete convergence
may lead to strongly underestimated magnitude of field b.
This difficulty is resolved in section 2 by reformulating the
problem in terms of the electric potential, F, which ulti-
mately yields all the other unknowns in a straightforward
way. Being equivalent to the more traditional formulation
(1), the electric potential equation has great numerical
advantages. A fully convergent solution is easily achieved
for realistic oceanographic input fields even without a
strong preliminary smoothing of these fields (which is
necessary when solving equation (1)). This advantage
becomes particularly important owing to the fact that
modern, eddy-resolving numerical models of ocean circu-
lation, serving as a source of input data for magnetic field
calculations, yield much finer spatial structure of oceano-
graphic fields and much greater magnitudes of ocean
current velocities than did the ocean models employed in
the previous studies.
[6] The main obstacle to inferring the ocean-induced

signal either from spaceborne or near-surface in situ
magnetometer measurements is the ambient ‘‘noise’’ due
to variations of the electric currents in the ionosphere,
magnetosphere (‘‘space weather’’) fluctuations, lithospher-
ic and Earth’s main magnetic field variations, etc. Their
spatial and temporal scales overlap with energy-containing
scales of oceanic variability. Therefore any feasibility
study on ocean magnetometry should start with quantita-
tive characterization of the natural variability of the ocean-
induced magnetic field. This characterization, based on a
rapidly convergent numerical solution for the electric field
potential, is produced in section 5. Three-dimensional
time-varying fields of oceanographic parameters hind-
casted by a high-resolution global ocean numerical
ECCO-MIT model [Fukumori et al., 1999; Lee et al.,
2002] are used as the input. In its 1�-resolution version,
this ocean model assimilates observational data to achieve
greater fidelity. As a source of even more realistic input
data on oceanic variability, we also use data products from
a (1/6)�-resolution version of the ECCO-MIT model. Tidal
motions are not included in this analysis.

2. Formulation of the Problem

[7] In this section we summarize an alternative formula-
tion aimed at replacing equation (1) with a computationally
more advantageous equation. Both formulations are based
on the thin-shell approximation of the Maxwell equations;
hence they are fully equivalent in terms of the underlying
physics.

2.1. Ocean: ���H <<<<<<<< z <<<<<<<< 0

[8] Since we are interested in the effects of large-
scale quasi-geostrophic (i.e., slow) motions, the electro-
and magneto-static equations for a moving medium in a
thin spherical two-layer shell reduce to the following

well-known system for the horizontal components, E?
and b?, of the ocean-induced electric and magnetic fields
E and b,

@Ej

@z
¼ 0

@Eq

@z
¼ 0; ð2Þ

@

@q
Ej sin q
� �

� @Eq

@j
¼ 0; ð3Þ

koc
@bq
@z

þ vFz ¼ �Ej; ð4Þ

koc
@bj
@z

þ uFz ¼ Eq; ð5Þ

where the subscripts j and q label the zonal and
meridional components, respectively. (By the vertical
components (such as Fz) and vertical derivative (@/@z)
we imply radial components and radial derivative (@/@r).)
The meridional coordinate, q, represents the co-latitude
(changing from 0 to p starting at the North Pole). The full
magnetic field B = F + b contains a much larger, 3D
component due to the Earth’s main field F, of which only
the radial component Fz is important at middle to high
latitudes. The spatial distribution of this component has
been derived based on the CHAMP CO2 model [Holme et
al., 2003] as a 3-year mean for the period 2001–2003.
The magnetic diffusivity coefficient koc = (msoc)

�1 is a
function of all three coordinates, although the horizontal
scale of its variations is very large by comparison to the
vertical scale. This coefficient is controlled by the electric
conductivity soc of seawater whose local, time-varying
values are computed based on water temperature and
salinity. These quantities, as well as the time-varying field
of the horizontal velocity u = (u, v), are obtained at 46
depth levels from the 1� ECCO-MIT numerical model
used at JPL [Fukumori et al., 1999] and at 50 levels for
the (1/6)� version of this model.

2.2. Marine Sediment: ���(H ++++ h) <<<<<<<< z <<<<<<<< ���H

[9] As in most of the preceding studies, we account for
the electric current in the sediment layer, but assume the
underlying rock mantle to be nonconductive. Therefore
equations (2)–(3) remain unchanged at �(H + h) < z <
�H, while equations (4) and (5) become

ks
@bq
@z

¼ �Ej; ks
@bj
@z

¼ Eq: ð6Þ

The relatively small conductivity ss of marine sediments
makes ks an order of magnitude greater than koc [e.g.,
Sanford, 1971; Larsen, 1992].
[10] An alternative approach accounting for the conduc-

tivity of the rock mantle is presented by Kuvshinov and
Olsen [2004]. However, for the case of tidal motions, they
find only a small decrease (within 20% in the scalar
magnitude of magnetic field) by comparison to the Tyler
et al. [2003] model which treats the Earth mantle as an
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insulator. In the absence of direct measurements of the
mantle conductivity, either approach leaves wide room for
speculations about the actual properties of the Earth
mantle and their relevance to the problem at hand. While
adhering to a more common view that discards the mantle
currents as being negligible by comparison to the electric
currents in the ocean and sediment layers, we delegate it
to future observational studies to rate the validity of either
approach.

2.3. Boundary Conditions

[11] Assuming the absence of electric current jz across the
top and bottom boundaries of our spherical shell, we
impose, based on the Ampere law j = m � r 	 B, the
following (zero curl) condition at z = 0 and z = �(H + h):

@

@q
bj sin q
� �

� @bq
@j

¼ 0: ð7Þ

This will soon be used to reduce equations (2) (3) (4)–(5) to
a single equation for the electric field potential from which
all other unknowns follow immediately.
[12] Remaining boundary conditions are standard: We

demand the continuity of b? and E? across the ocean floor
(z = �H) and constrain the vertical jump dzb? = b?(z = 0) �
b?(z = �H � h) of the horizontal component across
the spherical shell using a well-known relation [e.g.,
Stephenson and Bryan, 1992] between the field’s vertical
components at the top and bottom boundaries of the two-
layer shell: bz(z = 0) = bz(z = �H � h). In terms of the
magnetic field potential c (defined at z 
 0 and z � �H �
h), this is

@c
@z

����
z¼0

¼ @c
@z

����
z¼�H�h

: ð8Þ

As shown in Appendix A, if ocean-induced variations occur
only on short (compared to the Earth radius) spatial scales,
condition (8) leads to a very convenient approximation
relating the field’s horizontal components on both sides of
the shell,

b? z ¼ 0ð Þ � �b? z ¼ �H � hð Þ: ð9Þ

This approximation will be used in section 4 for crude
estimates based on in situ measurements of oceanographic
parameters.
[13] For our purpose, the values of b? are needed only

at the sea surface. Equations (4)–(6) yield

dzb? ¼ mSoc 1þ lð ÞE? 	 n� mFzS; ð10Þ

where n is a radial unit vector. In a component form this is
dzbj,q = (±)mSoc (1 + l)Eq,j � mFzSj,q, where the sign of the
first term in the r.h.s. depends on a subscript selected in the
l.h.s. The surface field is thus the sum of an electric field
term determined by the ‘‘global’’ solution of equation (12)
and a local induction term. The other notations are

Ss ¼
Z �H

�H�h

ssdz; Soc ¼
Z 0

�H

socdz; S ¼
Z 0

�H

usocdz; ð11Þ

where S is the electric conductivity flux, and l = Ss/Soc

characterizes the electric current leakage from the ocean to
the sediment layer. Its characteristic value is known to be
small: l 0.1 [Lilley et al., 1993], and its exact value has
little effect on the end result. In general, l, Soc, H, h, and S
are slow functions of j and q.

2.4. Electric Field

[14] Taking the curl of equation (10) and using
equation (7) yields a 2D Poisson-type equation for the
electric field potential in the ocean+sediment (spherical)
shell,

r? � Soc 1þ lð Þr?F j; qð Þ½ � ¼ r? 	 FzSð Þ; ð12Þ

where

Ej ¼ � 1

a sin q
@F
@j

; Eq ¼ � 1

a

@F
@q

: ð13Þ

It is easy to show that equation (12) also follows from the
electric charge conservation law, r � j = 0, integrated over z
under the boundary condition jz = 0 at the upper and lower
boundaries, combined with a thin-shell version of Ohm’s
law. The full, 3D version of equation (12) was used by
Flosadottir et al. [1997a, 1997b] to model the ocean-
induced electric field in the North Atlantic. We shall solve
equation (12) for the entire globe. Within the continents, the
flow velocities (hence, the r.h.s. of equation (12) becomes
zero, and we additionally assume that the inland con-
ductivity field is spatially homogeneous. This global
formulation permits the use of spatially periodic boundary
conditions for both the field potential and its gradient
around the globe. As a result, an unambiguous solution of
equation (12) becomes possible. Apparently, this solution
will contain errors in coastal regions due to the simplifica-
tion of the continental electric field. However, such errors
have little effect on the solution in the open ocean. With E?
obtained from equations (12)–(13), the magnetic field at
the surface follows from equations (10) and (8) as
explained in the end of this section. Once b?(j, q, z = 0)
is found, the magnetic field at any ocean depth follows from
equations (4) and (5).

2.5. Magnetic Field at and Above the Ocean Surface

[15] The atmospheric problem reduces to the Laplace
equation for the magnetic field potential, Dc = 0, (where
D � r � r). With dzb?(j, q) given by equation (10), the
surface potential, c0(j, q), can be computed using the
boundary condition (8) as described in Appendix A.
However, prior to this step, we have to determine the
‘‘electric current stream function,’’ y = c(j, q, z = 0) �
c(j, q, z = �H � h), by solving equation

r?y ¼ dzb?: ð14Þ

The formal solution, given by the line integral y(j, q)

y ¼
I
L

dzb0? j0; q0ð Þ � dX0? þ C; ð15Þ

is known only up to a constant C. Here L is an arbitrary
curve on the ocean surface connecting an arbitrary point
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(j0, q0) with the current point (j, q). The integration
constant represents the value of y at point (j0, q0). As a
test of goodness of the numerical solution for dzb?, we
verify that it satisfies the no-curl condition stemming from
equation (7) which guarantees that the line integral (15) is
indeed independent of the path L.
[16] The resulting y(j, q) ultimately (as shown in

Appendix A) permits an unambiguous determination of
the horizontal field b?(z = 0) = r?c, but not of the vertical
component bz. To obtain the latter, one has to determine the
integration constant in equation (15). This can be done
using either of the following two approaches. Let us assume
that inside a continent, far enough from the coastline, the
ocean-induced field y attenuates to zero. Placing the initial
point (j0, q0) of the integration path L in such an inland
area, we can set C = 0 and thus determine the magnetic
potential at any point of the ocean surface unambiguously.
An alternative approach (ultimately yielding the same result
for c(j, q)) is to demand the spatially periodic boundary
condition for the field y (as well as for its horizontal
gradient) around the globe, in the fashion of a similar
procedure used earlier with equation (12). Such conditions
are applied to the Poisson equation D?y = r? � dzb?
obtained by taking the gradient of equation (14).
[17] Given c(z = 0), the magnetic potential in the half-

space above the ocean can be obtained using a Green
formula,

c xð Þ ¼ 14p
Z
A

@G x; Xð Þ
@n

c0 j0; q0ð ÞdX0 ð16Þ

where G(x, X) is the Green function of the Dirichlet problem
for the Laplace equation with a spherical boundary A [e.g.,
Jackson, 2002]. In this equation, the vertical distance x3 is
measured from the center of the Earth, i.e., x3 � r. In
practice, a computationally more efficient approach to
solving both equations (14) and (16) is based on the
spherical harmonic expansion, Appendix A.

3. Estimates Based on in Situ Oceanographic
Measurements

[18] The accuracy of the modeling results in section 5
depends on the accuracy of the numerical solution of the
governing equations of section 2 and on the accuracy of
oceanographic fields supplied by the ECCO-MIT model.
These two issues are briefly discussed in this section.

3.1. Validation of ECCO-MIT Model Data Products

[19] We compared ocean current velocities hindcasted by
the 1� and (1/6)� versions of the ECCO-MIT model with
several field observations by ocean current moorings and
found that the 1� model tends to systematically underesti-
mate the velocities, whereas the (1/6)� version yields much
more satisfactory results in terms of the characteristic
amplitudes of the vertically integrated horizontal velocities.
Figure 1 illustrates time histories of observed and predicted
velocities at 51.03�S, 143.24�E where our model predicts
particularly high values of the magnetic field. At this site,
the relative r.m.s. error between the observed and modeled
amplitudes of the monthly averaged horizontal transport
was about 10% for the (1/6)� ECCO-MIT model but over

80% for the 1� model. This trend was confirmed for a few
other locations randomly selected for our comparisons. A
more systematic analysis of the ocean model performance
would require a special study that would take us well
outside the scope of the present work.
[20] Additionally, we compared the values of electric

conductance Soc computed from vertical profiles of water
temperature and salinity derived from model hindcasts with
the conductance based on the profiles of the monthly mean
temperature and salinity from the Levitus climatology. In
terms of their effect on the predicted values of the magnetic
field, the differences were negligible. As further discussed
in section 5, long-term averages of the ocean conductance
can be used in place of the actual instantaneous values with
little loss of accuracy.

3.2. Estimates of Magnetic Field Based on
in Situ Measurements

[21] As known from the previous studies, see also our
section 5, the two terms in the r.h.s. of equation (10) are of
comparable magnitude, although the second term is typi-
cally about twice as large as the first one. This fact, together
with equation (9), allows one to estimate the characteristic
magnitude of the horizontal field at the sea surface as

b? z ¼ 0ð Þ � mFzS: ð17Þ

In order to compute soc(z) and S we used vertical profiles
of ocean current velocities observed at two locations and
climatological data on ocean temperature and salinity. The
experimental sites and the results are listed in Table 1.
Two profiles shown in Figure 2 represent hourly
measurements averaged over the periods of observations
reported in Table 1. Site A was selected because its local
depth and characteristic current velocities are not too
different from those relevant to the field experiment of
Lilley et al. [1993]. Region B was selected owing to
particularly high values of both Fz and S at this location.
The local values of Fz are from Holme et al. [2003]. For
region A, the value of b? is in good agreement with the
measurements by Lilley et al. [1993] under comparable
oceanographic conditions. As shown in section 5, this b?
also agrees with our numerical model predictions based on
the (1/6)� resolution ECCO-MIT model.

4. Numerical Experiments

[22] Although both equations (1) and (12) are of the same
(elliptic) type, their numerical properties are dramatically
different due to a large difference in the magnitude of the
(properly scaled) coefficients entering their l.h.s. Efficient
numerical techniques for elliptic equations employ relaxa-
tion schemes [e.g., Fletcher, 1988] wherein the relaxation
parameter a is selected (empirically) to yield a fully
convergent solution after a minimal number of relaxation
steps (‘‘iterations’’). In general, the convergence rate is
higher for greater values of a. However, a must be kept
below a certain critical value in order to prevent a numerical
solution from ‘‘blowing up.’’ Stephenson and Bryan [1992]
discuss this issue with respect to equation (1).
[23] We carried out numerical experiments for both

equations (1) and (12) using the same (global) input fields
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from the 1� version of the ECCO-MIT model. Table 2
illustrates the results for equation (1) for which we had to
smooth the input fields twice in order to achieve conver-
gence. In Case 1 the iterations were stopped when the
relative error, �, (between two steps) dropped down to
10%. This required 88 iterations with a = 0.15 but only
half that number with a = 0.3. Setting more rigid require-
ments on �, we discovered that the ‘‘10% solution’’ was
far from fully convergent, as illustrated in columns 4 and 5
of Table 2. The full convergence was achieved only by
using an extremely rigid criterion (Case 4: � � 0.01%),
which required over 104 iterations. Further reduction of �
did not appreciably affect the end results. With a > 0.31,
the solution would not converge at all.
[24] The fully convergent solution for equation (12) was

possible even without preliminary smoothing of the input
fields. The full convergence was achieved with a = 1.5
after less than 102 iterations. This solution (in terms of bz)

was then compared with the fully convergent solution of
equation (1) showing rather insignificant differences. The
use of ocean data products from a (1/6)� version of the
ECCO-MIT model caused even more severe difficulties
for equation (1), requiring a strong (triple) preliminary
smoothing of the input data and taking well over 105

iterations.
[25] We thus conclude that using a ‘‘reasonable’’ criterion

of convergence (such as e = 5% employed by Stephenson
and Bryan [1992]) does not guarantee full convergence for
equation (1) and tends to yield much smaller values of the
magnetic field than are obtained at full convergence. On the
contrary, equation (12) permits using ‘‘over-relaxation’’
techniques with a as high as 1.5, and the fully convergent
solution is achieved after only about 102 iterations.
[26] To ensure the correctness of the field potential c at

the sea surface and above, we compared the following
independent approaches to solving the problems stated by

Figure 1. Comparison of ocean current velocities predicted by the (1/6)� version of the ECCO-MIT
model with observations at a buoy mooring located at 51.03�S, 143.24�E. Red curves, model prediction;
blue curves, ocean current meter data.

Table 1. Magnetic Field Estimates Based on Ocean Current Measurements

Station Latitude, �S Longitude, �E Depth, m Starting Date Duration, months S, m/s/ohm Fz, nT b?, nT

A 31.17 30.54 2498 3 March 1995 1.5 831 2.5 	 104 26.1
B 51.03 143.24 3800 3 December 1993 14 2004 6 	 104 151. 3
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equations (14), (8), and (16). Specifically, the closed-form
solution (15) of equation (14) was compared to a numerical
solution of the Poisson equation D?y = r? � dzb? showing
little difference. These solutions were then expanded in
spherical harmonics to apply the boundary condition (8) as
explained in Appendix A. The Spherepack package (J. C.
Adams and P. N. Swarztrauber, SPHEREPACK 3.1: A
Model Development Facility, available at www.scd.ucar.
edu/css/software/spherepack/index.html) greatly facilitated
these computations. The resulting surface potential was
used as c0 in equation (16) to compute the field above the
ocean. These results were then compared with the
‘‘spherical harmonics’’ solution obtained by expanding
the r.h.s. of equation (14) and computing the correspond-
ing coefficients dnm of equation (A4). The magnetic field
potential at and above the surface was then determined
using equations (A6) and (A1). At the altitudes above 50 km,
this solution was almost identical to the result based on the
Poisson equation for y and the Green function expression
for c. At lower altitudes, the use of equation (16) is
impractical. The spherical harmonics approach is compu-
tationally least expensive and it was ultimately used to

obtain all the results described in section 5. However, the
intercomparison of all three approaches confirmed the
validity and sufficiently high accuracy of the results
reported in section 5.

5. Analysis of Magnetic Field Variability

[27] Using temperature, salinity and horizontal velocities
hindcast at all depth levels by the global ocean numerical
ECCO-MIT model we computed the ocean-related param-
eters Soc and S for subsequent use in the electric and
magnetic field computations described in section 2.
Equation (12) was then solved for each time instant using
the successive over-relaxation method [Fletcher, 1988] with
the relaxation parameter a = 1.5 for the 1� version and a =
0.9 for the (1/6)� version of the ECCO-MIT model. The
results presented in Figure 3 and in Figure 8 (later in this
section) are based on the (1/6)� version of the ECCO-MIT
model, while the results in Figures 4–7 were obtained using
the 1� version and computing all fields every 10 days for
the 11 year period of simulations starting in January 1993.
As explained in section 3, the (1/6)� ECCO-MIT model
yields ocean currents in a much better agreement with
observations than does the 1� version. However, as we
found through numerical experiments, the corresponding
differences in the magnetic field at the satellite altitude are
rather small (about 20%). This happens because the 1�
model, while missing short-scale horizontal variability
(containing a significant fraction of the kinetic energy),
reproduces large-scale features of ocean dynamics reason-
ably well. The short-scale variations of the magnetic field
attenuate with height much faster than do variations caused
by the large-scale oceanic variability. Being rather ade-
quately reproduced by the coarser 1� model, this variability
also dominates the fields at high altitudes (as illustrated
by Figure 8). Because of the high computational cost of
using the (1/6)� ocean model, we preferred the 1� model
for statistical analysis requiring 11 years worth of model
simulations illustrated in Figures 4–7.
[28] In order to assess the relative importance of tem-

poral variability of electric conductivity, we averaged this
quantity over the entire 11-year period and used the
resulting mean field to recompute the magnetic fields for
July and January of 1998. The end results showed little
difference from the fields presented in Figure 3. Therefore
the magnetic field’s temporal variations are controlled by
the temporal variations of ocean currents. For all practical
purposes, the instantaneous field soc(j, q, z, t) can be
replaced with its ‘‘climatological’’ mean soc(j, q, z).
Finally, we estimated relative contributions of the electric
field and direct ocean induction terms in equation (10) to

Figure 2. Vertical profiles of horizontal velocity ampli-
tudes averaged over the periods of observations shown in
Table 1, for two locations in the Indian Ocean.

Table 2. Analysis of Numerical Solution of Equation (1)a

Case Number �, %

Number of Iterations Mean jcj, m 	 nT Max jbzj, nT
a = 0.15 a = 0.3 a = 0.15 a = 0.3 a = 0.15 a = 0.3

1 10 88 45 146.8 149.4 4.5 4.5
2 1 701 356 512.5 530.4 11.5 11.5
3 0.1 4042 2021 1104.0 1175.9 12.6 12.6
4 0.01 21,601 10,187 1510.7 1533.4 12.7 12.7

aDependence of the magnitude of the ocean-induced magnetic field on the error convergence parameter e, for two values of the relaxation parameter a.
The first in each pair of values in columns 3 through 5 corresponds to a = 0.15, and the second pair correspond to a = 0.3.
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the total ocean-induced magnetic field and found that the
second term in the r.h.s. of equation (10) accounts for
about 60–70% of the total signal.
[29] As found in the previous studies [e.g., Stephenson

and Bryan, 1992] (and confirmed by our numerical experi-
ments), specific values of l have a relatively small effect on
the solution of equation (12). In other words, variations of
the marine sediment conductivity do not appreciably
affect the magnetic field at sea surface. Following earlier
recommendations [Lilley et al., 1993], we used l = 0.1. The
solution for the North Atlantic was compared with the
solution obtained earlier by Flosadottir et al. [1997a,
1997b]. The latter authors accounted for spatial variations
of marine sediment and inland conductivity and imposed
the vanishing of the electric field potential with an inland
distance away from the coastline. Despite such differences,
both solutions showed a good mutual agreement both in the
magnitude and pattern of electric field variations across
most of the Atlantic basin.
[30] In Figure 3 we demonstrate model predictions for

the ocean-induced magnetic field at the sea surface and

CHAMP satellite altitude. These results confirm earlier
findings [e.g., Stephenson and Bryan, 1992] that the largest
signal occurs in subregions of the Antarctic Circumpolar
Current. However, our surface field is almost 2 orders of
magnitude greater than predicted in all previous studies.
Appreciable magnitudes are found also in many other
regions including the Gulf Stream and Kuroshio systems.
At the sea surface, the amplitude of b attains 110 nT in
several spots south of Australia, while at the satellite
altitude its maximum value is 6 nT, also much larger than
in the earlier studies. Similar calculations using ocean data
products from the 1� version of the ECCO-MIT model yield
20 nT as the maximum amplitude of the surface field, and
4 nT at 430 km.
[31] In the absence of an accurate model of the ‘‘external’’

magnetic field variations caused by non-oceanic factors,
manifestations of the ocean-induced signal are difficult to
discern from the noisy background. One possible approach
is to investigate fluctuations of the observed field about
its long-term mean. Magnetic field fluctuations on time-
scales corresponding to the characteristic scales of oceanic

Figure 3. Instantaneous magnetic fields for (left) winter and (right) summer seasons. (bottom)
Magnitude, b = jbj, of the field at the sea surface. (top) Magnitude, b, at 430 km above the sea level.
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variability can be extracted from satellite magnetometer
data, as for example done in section 6, and compared with
model predictions. Foreseeing such applications, we esti-
mated the size of ocean-induced fluctuations based on the
standard deviation of field b from its long-term mean.
The pattern predicted in Figure 4 shows two regions of
the Southern Ocean as particularly attractive for observa-
tional studies. The distribution of this variance over differ-
ent timescales can be inferred from frequency spectra of
magnetic field temporal variations at particular locations.
[32] Such spectra were computed as follows. First, we

applied the Lee filtering algorithm [Lee, 1986] to the time
histories of the magnetic field amplitude and of the ocean
transport components, in order to reduce adverse effects of
statistical outliers in the time series. Parameters s (the
threshold based on the standard deviation) and N (the size
of the record segment) were assigned values 5 and 3,
respectively, which led to the suppression of high-frequency
noise on scales less than 2 months, but had little effect on
the total variance and the spectral shape at frequencies
below a 3-month (i.e., seasonal) timescale. For each region

described in Figures 5–7, and for every field under study,
we computed four spectra using model data at four neigh-
boring points (about 100 km apart) in a given area. The
spectra in Figures 5–7 represent averages over four spatial
points, and hence describe temporal variability representa-
tive of an individual cell of our computational 1 	 1 � grid.
As evident from these plots, magnetic field variability at
the satellite altitude is dominated by annual timescales,
although semi-annual and inter-annual scales can make
comparable contributions depending on a region. Not all
of the local peaks observed in the spectra of ocean currents
are manifested in the magnetic field spectra at the satellite
altitude. In other words, the filtering effect of geometric
attenuation of the magnetic field with the distance away
from the surface is different for oceanic motions of
different timescales. In particular, annual and semi-annual
oscillations are affected less than oscillations at most other
timescales. A rather dramatic example of this effect is
illustrated by the spectra of Figure 7. In such regions,
inter-annual variability represents the strongest component
to be observed both at sea surface and at satellite altitude.

Figure 4. Standard deviation sb of the instantaneous magnitude jbj of the ocean-induced magnetic field
from its 11-year mean: (top) 430 km above the sea level and (bottom) at sea level.
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[33] The self-explanatory Figure 8 illustrates spatial var-
iability of an instantaneous magnetic field (corresponding
to the right panels of Figure 3). At the CHAMP satellite
altitude, typical scales of latitudinal variations are about
500 km and these variations are in a few nT range.

6. Preliminary Analysis of CHAMP Satellite Data

[34] Since the ocean-induced signal is small by compar-
ison to other factors of satellite-observed variations of the
magnetic field, its extraction requires development of
special techniques to remove ‘‘external’’ fields. Empirical
models based on the spherical harmonics decomposition of
the time-varying fields observed at different altitudes are in
a state of rapid development, and may eventually provide
necessary help. Such models attempt to describe ‘‘exter-
nal’’ fields associated with individual factors, such as the
main Earth field, the Earth’s crustal component, the iono-
spheric and magnetospheric contributions, etc. However,
as our present experience has shown, even the latest CM4
model [Sabaka et al., 2004] does not yet yield a suffi-
ciently ‘‘clean’’ residual. After we have removed crustal,
ionospheric and magnetospheric fields (retaining only
nightly observations during magnetically quiet periods),
the residual still exhibited variations in time as well as
along satellite (near-meridional) passes in excess of 10 nT.
These variations exhibited neither geographic nor temporal
correlations with the ocean signal. Owing to the fact
that the time-averaged ocean-induced signal is difficult to

separate from the crustal signal when developing an
empirical model of the latter, the CM4 model mixes these
two fields together (T. Sabaka, personal communication,
2004). Eventually, we concluded that we cannot achieve

Figure 5. Frequency power spectra of (bottom) the ocean
horizontal transport and (top) magnetic field amplitude in
an ACC area centered at 122.5�E, 47.5�S. Blue curve,
bATM at sea surface; red curve, bATM at 430 km altitude.
The frequency axis is logarithmic.

Figure 6. Same as Figure 5, but for a Labrador Sea area
centered at 59.5�N, 55.5�W.

Figure 7. Same as Figure 5, but for an ACC area east of
New Zealand centered at 40�S, 180�.
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the desired accuracy by using present empirical models of
individual components of the total field in order to extract
the residual due to the ocean-induced signal.
[35] We then shifted our attention to the spatial distribu-

tion of the standard deviation of the properly filtered signal
from its long-term average. Figures 9 and 10 show the
RMS deviation of the CHAMP observed magnetic field
from its 2.5-year mean. These results were obtained using
the following procedure. The CHAMP data (separately for
each orthogonal component of the observed field) were
high-pass filtered along satellite passes to retain only
spatial variations with scales shorter than 103 km. This
served to remove the main Earth field, the large-scale
components of crustal and magnetospheric signals, and the
variations induced by a constantly changing altitude of the
satellite. These data were then binned into time-space cells
with the dimensions of 1 month, 5� in the zonal extent,
and 0.5� in the meridional. Actually, we created two such
data sets: one included all observations (day and night),
and the other only observations during local nighttime
hours to suppress the ionospheric component. The former
data set was created to demonstrate that our data analysis
approach does bring out field variations (of any origin,
including ionospheric) with relatively short spatial scales,
even if their magnitude is less than a few nT: as antici-

pated, one of the prominent features in Figure 9 is the
Equatorial Electrojet (EEJ) which is observable only at
daytime hours and is characterized by rather short spatial
scales. Its position and width are in good agreement with
previous, much more elaborate analyzes [e.g., Lühr et al.,
2004]. The absence of EEJ in the top panel of Figure 9 is due
to the fact that zonal electric currents dominating EEJ induce
only vertical and meridional components of the magnetic
field. Furthermore, the binned data (with an average of about
102 measurements in each cell) were averaged within each
cell followed by subtracting the 2.5-year mean for a given
geographic location from the monthly means in each cell.
The monthly fields were then smoothed using running
averaging over 11 points in the meridional and 3 points in
the zonal sections. These spatially smoothed residuals were
ultimately used to compute standard deviations from the
2.5-year means.
[36] One important reason for using this quantity is that it

must be strongly affected by magnetic field variations with
timescales corresponding to quasi-geostrophic ocean cur-
rents. The deviations plotted in Figure 10 are free of
ionospheric influences, although some effects of magneto-
sphere and/or lithosphere are apparent, for instance, as the
North American anomaly. The zonal component is not
shown in Figure 10 because, as pointed out earlier, EEJ

Figure 8. Meridional sections of the ocean-induced magnetic field at (left) 150�E and (right) 60�W, for
June 1998. (bottom) Vertical component bz. (middle) Magnitude, b? = jb?j, of the horizontal component.
(top) Full scalar field b = jbj.
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does not induce this component; therefore, the removal of
daytime measurements does not substantially affect the
RMS deviation of bx.
[37] The physical meaning of the quantity plotted in

Figure 10 is closest to that shown in Figure 4 although
the time interval corresponding to these RMS values is
much shorter than the 11-year interval used for Figure 4.
Comparing these results with the top panel of Figure 4, we
conclude that the large variances in the region south of
Australia are consistent with our model predictions both in
terms of location and in terms of the magnitude of the field
variance.

7. Analysis and Conclusions

[38] The very large (by comparison to the previous
predictions) magnitude of the ocean-induced magnetic field

at the sea surface is due to both a more accurate oceano-
graphic model yielding significantly higher velocities of
ocean currents and a more robust electro-magnetic model
yielding a fully convergent solution for realistic input data.
The predicted amplitude of field variations at the sea
surface, on timescales from seasonal to inter-annual, makes
the ocean-induced component to be a major factor of
magnetic field variations to be observed by instruments
situated at the sea surface and at aircraft altitudes. Such
measurements, however, should be conducted over open
ocean areas as opposed to island magnetometer observato-
ries at which the second term in the r.h.s. of equation (10)
vanishes and the first term dramatically decreases.
[39] The field magnitude predicted at the CHAMP

altitude attains 6 nT. Given the 0.1 nT (or better) accuracy
of the present satellite magnetometers, these values are
within the reach of magnetometers flying at altitudes

Figure 9. Standard deviation sb of the CHAMP-observed (bottom) vertical, (middle) meridional, and
(top) zonal components of the residual field b from its 2.5-year mean.
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below 500 km. However, satellite measurements might, at
best, detect only large scale variability associated with
seasonal to inter-annual variability of horizontal oceanic
transport averaged over large (about 500 km) sections.
Ocean-induced fluctuations at annual and longer time-
scales are pronounced much stronger than higher-frequency
fluctuations. Therefore such long-term oceanic variability
may be more amenable to magnetometer-based detection
than the higher-frequency components.
[40] Temporal fluctuations of the magnetic field about is

long-term mean are rather small (see Figure 4). Their RMS
value is in the 0.1–1.0 nT range. Therefore their detect-
ability in general is an open issue because it critically
depends on the relative strength of non-oceanic fluctua-
tions within selected ranges of spatial and timescales.
However, in the area south of Australia, where these
fluctuations attain their maximum, our preliminary analysis
of the CHAMP satellite data appears to confirm the model
predictions.

Appendix A

[41] The application of boundary condition (8) as well as
a numerical solution of the Laplace equation for the
magnetic field potential above the ocean surface is greatly
facilitated by using a spherical harmonics decomposition.
Relationships between the coefficients of expansion for the
fields under consideration are provided by Stephenson and
Bryan [1992] in their Appendix B. These relationships can
also be used to elucidate the approximate condition (9).
[42] Neglecting the thickness, H + h, of the ocean-

sediment system in comparison to the Earth’s radius, a, the

magnetic field potential beneath and above the ‘‘horizontal’’
boundaries of the shell is expanded as

c j; q; rð Þjr�a ¼
X
n;m

anmYnm j; qð Þ r=að Þn

c j; q; rð Þjr
a ¼
X
n;m

bnmYnm j; qð Þ r=að Þ� nþ1ð Þ; ðA1Þ

where anm and bnm are the expansion coefficients, and the
radial coordinate, r, is related to z of section 2 as z = r � a.
Substituting these expressions into equation (8) yields

bnm ¼ � nþ 1

n
anm: ðA2Þ

Note that if the ocean-induced variations of the field occur
only on short (relative to the Earth radius) scales along the
ocean surface, low-order terms in equation (A1) will have
only a negligible contribution to the horizontal field b? =
r?c. Really, the characteristic scale of Ymn(j, q) variations
decreases with an increasing n (because it is inversely
proportional to the number of zeros of function Ynm). It is
easy to show that if the ocean-induced variations occur on
scales shorter than, say, 600 km, the dominant contribution
to b? comes from the terms in equation (A1) with n 
 5.
However, for such large n, equation (A2) reduces to

bnm � �anm; ðA3Þ

which translates into the approximate boundary condition (9).
For a planar shell, this condition is exact.

Figure 10. The same as Figure 9, but using only nighttime measurements to reduce ionospheric effects:
standard deviation sb of the CHAMP-observed (bottom) vertical and (top) meridional components of the
residual field b from its 2.5-year mean.
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[43] Equation (14) presents the vertical jump, dzb? =
b?(z = 0) � b?(z = �H � h), of the magnetic field as the
surface gradient of a scalar function y. Expanding this
function in spherical harmonics,

y j; qð Þ ¼
X
n;m

dnmYnm j; qð Þ; ðA4Þ

one can establish relationships (by means of equations (8)
and (A2)) between the expansion coefficients,

anm ¼ n

2nþ 1
dnm ðA5Þ

bnm ¼ � nþ 1

2nþ 1
dnm: ðA6Þ

This facilitates the determination of magnetic potential c at
the shell boundaries based on dzb?.
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